![]() ![]() |
||
|
||
Suscripciones (público/email)
Suscripciones (servicios a medios) |
Recuerda:
suscríbete a nuestros boletines gratuitos y recibe cómoda y
semanalmente las noticias en tu dirección electrónica.
Ciencia de los
Materiales
Este exceso de calor es eliminado del sistema utilizando agua, la cual enfría el material hasta su temperatura original. Cuando el campo magnético es retirado, el material se enfría aún más. Ésta es la propiedad refrigerante que los investigadores esperan aprovechar para usarla en una amplia variedad de aplicaciones de refrigeración. Se ha demostrado que la tecnología, basada en una investigación financiada en el Reino Unido por el Consejo de Investigación en Ingeniería y Ciencias Físicas (EPSRC), es posible en el laboratorio. Pero los investigadores están buscando materiales mejorados que proporcionen un enfriamiento más eficaz a temperatura ambiente, para que la tecnología pueda llevarse fuera del laboratorio y ser instalada en domicilios y lugares de trabajo. Ellos necesitan un material que exhiba un calentamiento y un enfriamiento extremos cuando un campo magnético sea aplicado y retirado posteriormente, y que pueda operar en condiciones cotidianas sin perder eficacia a medida que el ciclo de enfriamiento se repita una y otra vez. El nuevo estudio muestra que la estructura de los cristales dentro de diferentes aleaciones, también conocida como microestructura, tiene un efecto directo en el grado de eficiencia con el que esas aleaciones pueden comportarse en el corazón de un sistema de refrigeración magnética. El equipo del Imperial College de Londres que ha realizado la investigación, piensa que lo descubierto en ésta puede, en el futuro, ayudar a que se fabriquen materiales mucho mejores para la refrigeración magnética. Información adicional en: |
|
Copyright
© 1996-2009 Amazings.com. All Rights Reserved. |